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A B S T R A C T   

In this era of modernization, digital technology plays a major role in all facets of life. We are 
accustomed to using computers and smartphones to access information, create, express, 
communicate, and collaborate, contributing to our personal, social, and professional survival at a 
comfortable level. As the legitimate use of digital space has grown, so have the prospects for 
malice via swindlers, blackmailers, vandals, and other criminals, to benefit by creating and 
propagating malware. While the main motive of malware designers is to make surplus profit 
illegally, other trivial motives range from activism and pranks, espionage, cyber theft, as well as 
serious crimes like privacy breaches. Policing the expanding attack surface needs the develop-
ment of competent anti-malware solutions with more generalization to detect even zero-day 
malware and resolve their incidences with minimal human intervention. Anti-malware solu-
tions pick up effective strategies from static, dynamic, reverse engineering, and advanced ma-
chine learning techniques. An arms-race situation always exists between the malware authors and 
the anti-malware community. In this paper, we present a comprehensive investigation of 
computer-based and mobile-based malware, their countermeasures, and various detection 
methods. We also discuss the additional issues and the challenges of malware detection and 
finally highlight a few open research issues, directing the trends of malware/anti-malware 
development.   

1. Introduction 

The software is defined as a collection of programs, which constitute a set of instructions to perform a specific task. Some examples 
of software programs are operating systems (OS), utility programs, device drivers, word processors, spreadsheets, networking, 
database management systems, etc. Akin to useful category programs, there exists another category of programs created with mali-
cious intent to target computing systems. These programs which aim to violate a computer system’s security policy in terms of 
confidentiality, integrity, and availability of data are called malware or bad programs. Malware is a serious security threat to critical 
applications like education, communication, hospitals, banking, etc. There has been a proliferation in the variety and exoticism of 
malware behavior in recent years. Further, the associated intensity of damage caused on users’ data, time, and productivity has 
increased significantly. It has culminated to a level where a malware attack can completely paralyze an entire system and destroy the 
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data and the hardware infrastructure. Fig. 1 shows the malware threat levels on various Operating Systems (OS) in the year 2020. 
Threat level indicates the percentage of malware infections on different operating systems. As observed from Fig. 1, Windows OS 
demonstrates the highest malware infections in comparison to other operating systems. 

Attackers continually change their malware to enhance complexity and prevent detection as much as possible. They write new 
malware, which is termed advanced malware, owing to their capability to change their forms and disguise themselves to obfuscate or 
fool malware analysts. This mutant malware is coined polymorphic malware. Metamorphic viruses are insidious, and they do not 
require a decryption routine. They vary the body of the code directly by carrying a morpher (code for morphing transformations) 
within itself to generate malware variants. Common morphing techniques used by malware authors include dead code insertion, 
variable renaming, statement reordering, etc. Most of the metamorphic or polymorphic malware exhibit complex and mutating 
characteristics that make it harder to detect. 

The new malware can detect and evade malware detection systems and mask malicious features while operating in a sandbox. They 
tend to use pre-defined malware for identifying and preventing virtual machines and code analyzers from gathering details about the 
user’s systems. Evasion techniques [2] fall into three broad categories, namely, (i) anti-security techniques; (ii) anti sandbox tech-
niques; and (iii) anti-analyst techniques. Anti-security techniques are applied to escape detection from antivirus software, firewalls, 
etc. Anti-sandbox techniques by-pass inspection of monitoring tools that report the behavior of malware. Malware authors learn the 
design flaws of artifacts such as registry keys, specific files, processes, etc. of virtual environments. They write intelligent code in such a 
way that it disrupts the actual execution flow. 

Anti-analyst techniques are employed to protect malware from being analyzed. Malware analysis diagnoses whether malware runs 
in a virtualized or sandbox environment, is monitored by any tool such as process monitor, Wireshark, etc., or whether it is being 
debugged. The usage level of counter malware detection techniques by malware attackers in 2020 is shown in Fig. 2. Anti-sandbox 
techniques are used more frequently compared to other anti-detection techniques by malware attackers. By inserting these tech-
niques into the malicious code, they remain hidden and persistent on the target. Counter malware detection techniques have estab-
lished an endless arms race between malware authors and malware detection techniques. 

The contribution of this paper is as follows.  

• This paper provides an exhaustive and comprehensive survey of malware attacks and techniques to combat them. In the field of 
Malware Detection Systems, there have been numerous surveys related to machine learning, cloud, IoT, and a few surveys on Man 
in the Middle, Stealth malware, and rootkits. However, none of the existing work addresses the complete bird’s eye view of 
malware and mitigation techniques.  

• This paper presents an overview of the malware mitigation techniques. Further, it differentiates Static Analysis (SA) and Dynamic 
Analysis (DA) from machine learning-based detection approaches. A detailed taxonomy of the malware mitigation techniques is 
presented and supported with suitable diagrammatic illustrations.  

• This paper includes the performance evaluation of different malware detection approaches to provide a better understanding for 
malware researchers to focus on developing smart and efficient malware detection systems.  

• Finally, it is realized that the observations tendered in this paper will (a) help researchers become more familiar with the malware 
types, attack model, attack techniques, propagation mechanism, persistent methods, and intelligence (evasion methods) incor-
porated in combating malware, (b) give a clear insight about the possible research directions under real-life conditions, and finally, 
(c) provide directed design guidelines in machine learning techniques specifically for malware detection. 

The terms specific to malware, which are used in this paper, and their explanations are given in Table 1. 
The paper is organized as follows: Section 2 presents an overview of various types of malware. Section 3 discusses the prevalence of 

malware in Windows OS, the general structure of the detection model, and tools employed in malware detection. Section 4 summarizes 
the taxonomy of malware detection and a very detailed discussion of each method. Section 5 presents the possible research directions 

Fig. 1. Malware threat level on various OS in the year 2020 [1].  

S. Abijah Roseline and S. Geetha                                                                                                                                                                                   



Computers and Electrical Engineering 92 (2021) 107143

3

in this domain. Lastly, Section 6 concludes this study. 

2. Overview of malware 

Malware is a general term that describes several types of malicious programs such as viruses, worms, rootkits, Trojan horses, 
backdoors, botnets, spyware, adware, ransomware, etc. Variants of malware are classified based on certain unique characteristics like 
propagation methods, infection types, etc. A brief outline of the definition, impact, spreading strategies, and examples of different 
types of malware are presented in Table 2. 

Cybercriminals constantly develop new distribution techniques to penetrate a victim’s system using malware. Malware spreads 
across host systems through direct or indirect user actions. Attackers trick innocent users by allowing them to download and run 
malware on their systems, without their knowledge. Malware damages a computer’s boot sector, files, installed software, and BIOS, 
thereby tainting users’ data and files. Some of the commonly used distribution modes of malware are discussed below. 

2.1. E-mail 

Cybercriminals tend to propagate malware by incorporating malicious attachments and links in emails. Phishing e-mails appear to 
be legitimate, since the source is disguised as friends, esteemed organizations, or other reliable sources that users trust. When users 
download the attachments or click on the links, the malware is infested on their computers, causing serious security risks. Some 
malware on e-mails infects a user’s system when a user merely attempts to preview the e-mail, without downloading or clicking links. 

Fig. 2. Counter malware detection techniques by attackers in 2020 [2].  

Table 1 
Terms used in this paper.  

S. 
No 

Terms Explanations 

1 Malware A program that is harmful to a computer or mobile user and performs malicious activities such as stealing, encrypting or removing 
sensitive data, monitoring users’ activity without their permission, etc. 

2 Stealthy Malware Secret or hidden malware 
3 Metamorphic 

Malware 
Malware that is capable of changing its code and signature patterns with each iteration 

4 Polymorphic 
Malware 

Malware that constantly changes its identifiable features in order to evade detection 

5 Detection Methods Malware identification techniques 
6 Code Obfuscation A method of performing mutations such as variable renaming, code reordering, etc. to create malware variants, evading detection 

by malware detectors 
7 Evasion The act of avoiding detection by detectors 
8 Packers Software that unpacks itself in memory when the packed file is executed 
9 Reverse Engineering A technique which analyzes the malware code to understand the aim and functionality of malware 
10 Sandbox A secure and virtual environment in which malware code is executed and tested 
11 System Calls A program that provides an interface between a process and operating system, requesting services from the kernel of the operating 

system 
12 Semantics Meaning of various elements of a program code 
13 Machine Learning The ability of systems to automatically learn 
14 Malware Authors Malware writers 
15 Static Analysis Analysis of a binary without executing it 
16 Dynamic Analysis Observing the behavior of the malware during its execution 
17 False Positives Labeling clean samples as malicious  

S. Abijah Roseline and S. Geetha                                                                                                                                                                                   



Computers and Electrical Engineering 92 (2021) 107143

4

Table 2 
Types of malware.  

S. 
No 

Malware 
Type 

Description Propagation 
Methods 

Impact Examples 

1 Virus • an unwelcome computer program 
that can infect legitimate host 
programs 
• attaches to a useful application or 
making copies of itself 
• damages the host and the 
integrity of information 
• require user action to activate 
propagation 

• Removable media 
• Internet downloads 
• E-mail attachments 

• Periodical illegitimate message 
alerts 
• Slow startup 
• Degrades computer 
performance, formats disks 
• Damages files or even crashes 
systems 

Elk Cloner, Brain boot sector virus, 
etc. 

2 Worm • self-replicating program 
• spreads from one device to 
another using different vectors such 
as Universal Serial Bus (USB) 
devices or E-mail [68] 
• spreads on their own over a 
computer network 
• Does not need any user action to 
activate them 

• Removable media 
like USB 
• E-mail attachments 

• Exploits vulnerabilities in 
operating systems or installed 
programs 
• Causes network performance 
issues 
• Utilizes large amount of 
systems’ memory resources 

Creeper, Morris worm, 
Michelangelo, SQL Slammer worm, 
Duqu worm, Internet worm, Xerox 
worm, Stuxnet 

3 Rootkit • Takes privileges (root-level 
access) of a system administrator 
• Characterize undetectability by 
being persistent and stealthy 
• The attacker installs a rootkit and 
conceals its activities from the 
detection systems 

• Malicious file that 
appears benign 
• Downloadable 
plug-in 
• E-mail attachment 
• Infected mobile 
apps 

Gains control over the device’s 
functions and other software, 
including security software 

Knark, Rkit Cloaker, VGA rootkit, 
SubVert, Blue Pill, Rovnix, Stoned 
Bootkit, Vanquish, Aphex, and 
Hacker Defender 

4 Trojan Horse • Acts as a legitimate program and 
performs malicious actions in the 
background disguise of a useful 
program 
• Downloaded automatically 
• Spreads to other devices that are 
connected to the same network  

• Acquires confidential 
information 
• Modifies or deletes files 
• Monitors user activity 
• Disrupts normal functionality 
• Drops payloads such as file, 
registry, network, etc. 
• Scans networks for 
vulnerabilities 

Trojan-Banker, Trojan-Downloader, 
Trojan-DDoS, Trojan-Dropper, etc. 

5 Backdoor • Performs unauthorized remote 
access to a computer system 
• Logs user activity and tracks web 
browsing behaviors 

• E-mail attachments 
• File-sharing 
programs or 
infection of remote 
systems 

• Spies and gains access control 
over user activities and their 
system 
• Steals credentials of victim 

Netcat, Finspy, KeyBoy 

6 Spyware • Remote monitoring software that 
monitors user’s activities 
• Keeps track of personal and 
confidential details of the user 
without their knowledge 
• The gathered sensitive 
information is sent back to the 
attacker or others to perform 
malicious activities 

Through free 
software downloads 

Changing browser settings Caveat, CoolWebSearch, HuntBar, 
Cydoor, 180SearchAssistant, etc. 

7 Botnet • Conquers and infects a computer 
and becomes a node on the bot 
network 
• Later, it spreads and infects 
thousands of computers remotely 
across the network  

Spreads viruses and worms 
sends spam e-mails, allows 
Denial of Service attacks on 
websites, drive-by downloads, 
etc 

Agobot, Mirai, Conficker, Zeus, 
Waledac, Mariposa, Kelihos, Kaiten, 
Hybrid_V.1.0, etc 

8 Adware Automatically displays or 
downloads unwanted 
advertisements when the user 
executes another program 

Free games, peer-to- 
peer clients, etc 

• Keeps track of confidential 
information of users 
• Takes control of browser 
activities when it is installed into 
the user’s system 

Plankton, Fireball, Appearch, 
DollarRevenue, Gator, DeskAd, etc 

9 Ransomware • Originally known as cryptoviral 
extortion 
• Insidious malware that works 
with three tasks, such as reading 
the original data, and then 
encryption is done, and original 
data is wiped off  

Encrypts an individual’s data or 
organizational data and 
threatens to deny access to 
demanding a ransom 

WannaCry, Cryptolocker, Locker, 
Bad Rabbit, Goldeneye, Zcryptor, 
Petya, GandCrab, SamSam, etc 

10 FakeAV   

(continued on next page) 
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2.2. Drive-by download 

Malware on web pages could infect users and their computers when they browse the Internet. A potential victim is one who is 
connected to the Internet and performs browsing activities. Users download malware infected-pirated software disguised as a legit-
imate one. 

2.3. Local area networks (LANs) 

LANs are a network of locally-connected computers, where one machine that gets infected with malware propagates it across other 
machines in the network. 

2.4. Social networks 

Malware authors use many popular social networks as attack vectors. A user’s account is infected with malicious programs, which, 
when visited by other third-party profiles, get infected and propagates onto other users’ systems. 

2.5. Storage/ removable media 

Storage media like USBs and CDs are used as attack vectors that can be inserted into a victim’s computer system. It is good practice 
to scan any external drive before copying files to or from them. However, some malware stays hidden and is undetectable by anti- 
malware scanners. The Autorun component of Windows is the main infection vector for this removable drive infection worm. 

Once malware is loaded into the system, its main aim would be to evade detection, secretly launch, be persistent (i.e., continue to 
run regardless of system restart), and carry out its core functionality like spreading itself to other machines. The malware works by 
dropping payloads, which can be based on file or registry, or some other payload to perform these activities. 

The behavior of malware is studied by first identifying its payloads. Any system resource that malware uses in an unusual way is 
called a payload, and this payload causes overhead on the system. Malware payloads include file payload, registry payload, network 
payload, directory payload, and other miscellaneous payloads. File payload refers to the act of writing a file on the hard disk (e.g.) a 
copy of the malware in a different location. Registry payload involves creating a registry entry (e.g.) an autostart entry. 

Network payload refers to accessing a website (e.g.) to download more malware. 
Directory payload involves creating folders (e.g.) repositories for configuration data. Other miscellaneous payloads create, modify, 

corrupt, or access other crucial information. 

3. Computer-based malware detection 

3.1. General setup for computer-based detection 

A malware analysis lab is essential to understand and gain a deeper insights into any malware, and to develop methods to reduce 
and control the menace of its infection in the future. The prerequisite for setting up a lab is to set up a network to control and analyze 
what enters the system and what leaves. Furthermore, the lab systems are isolated from other connected systems in a network. Vir-
tualization is an important step as it allows an analyst to host everything on a single machine. The execution of any application in the 
VM cannot affect the host OS. A virtual machine (VM) is a safe environment where malware is allowed to run without infecting the 
host. The system state prior and successive to the execution of the malware is traced. Snapshots are taken to revert to the safe un-
infected state once the VM is infected with malware. 

Malware analysis steps include, (i) install and configure malware analysis platforms to carry out static or dynamic malware analysis 
(ii) install analysis tools (iii) set up the network configuration (iv) save a snapshot in a clean state. Before performing analysis, it is 
necessary to test the virtual environment for any connection of the analysis machine with outside networks. 

3.1.1. Monitoring tools 
Malware analysis tools generate analysis reports, which provide detailed insights for a security analyst to understand the nuances of 

runtime behaviors and actions of samples. A security analyst devises detection techniques based on the knowledge gained from dy-
namic malware analysis, and the exhaustive process is explained later. The tools for performing dynamic analysis are used to monitor 

Table 2 (continued ) 

S. 
No 

Malware 
Type 

Description Propagation 
Methods 

Impact Examples 

Imitates security product like an 
antivirus, and display a GUI 
window which scans the victims’ 
system for malware 

Reports several fake infections 
and attempts to scare victims 
into buying the full version of the 
fake software to clean the 
machine  
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file changes on the system, as well as registry changes, process activities, web access history, etc. 
The following are the malware analysis tools that are used to analyze or monitor malware samples. 
Activity Loggers: Regshot and InCtrl are some of the activity-logger tools that log the changes in the system between two timelines 

(e.g.) before and after malware has been executed. The major limitation of this method is that if a particular change is done and undone 
between the snapshots, it would not be logged. 

SysInternals Tools: RegMon, FileMon, ProcMon, and NetMon were previously distributed as separate tools to monitor malware. 
Later, these tools were all integrated into a single tool as ProcMon. ProcMon continually monitors the changes in the registry, file 
system, network, and process activities, and logs them. The advantage of ProcMon-like tools is that every activity (done and undone) is 
logged as separate events and recorded for future reference. 

3.1.2. Windows portable executable (PE) file format 
Windows executable files conform to the PE file format and are represented by EXEs, DLLs, SYS, etc. The Windows Loader parses the 

executable file’s header structure and metadata fields to load them into Windows memory at runtime. Since most computer-based 
malware samples are in the form of Windows executables, malware analysts are required to understand the PE file format for per-
forming static analysis. Fig. 3 shows the general layout of the PE File Header. The PE Header is the beginning structure of a PE file 
containing metadata, which gives specific information about the file at runtime. The metadata information may include the location 
and size of various data contained in the file, and what to be loaded in memory, with what attributes, etc. 

3.2. Generic model of computer-based malware detection 

The Windows PE file is given to the malware detection system to check whether it is malware or a benign file. The disassembler or 
debugger analyzes the file statically or dynamically and captures its behavioral characteristics. The malware, if obfuscated or packed, 
is subjected to deobfuscation/unpacking, to get the raw malware sample. Then, various features such as binary strings, API calls, etc. 
are extracted. Machine learning techniques are employed to classify the samples as malware or benign, based on the feature repre-
sentations. The malware database is regularly updated with the new and modified inspected malware signatures. The generic pro-
cedure for the computer-based malware classification process is shown in Fig. 4. 

3.3. Taxonomy of computer-based malware detection methods 

The rise of new and zero-day malware has motivated researchers to focus on measures to identify and mitigate the same. Malware 
analysis is a crucial step in developing effective malware detectors. Malware analysts exert a broad set of malware analysis and defense 
techniques to discover a clear picture of malware. The computer-based malware analysis and detection approaches are broadly 
classified as static analysis, dynamic analysis, and hybrid analysis. The taxonomy of methods used for computer-based malware 
analysis is shown in Fig. 5. 

3.3.1. Static analysis 
Static analysis allows an analyst to examine static properties such as strings, hashes, signatures, metadata, of a suspicious file. Most 

antivirus software employs a signature-based approach to discriminate malicious and benign files. These methods operate with a list of 

Fig. 3. General layout of PE file header.  
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pre-defined virus signatures, commonly called a signature database. A signature is a series of bytes, which uniquely identifies a 
particular malware. If the input program file matches a signature in the database, the program is marked as malicious. Signature 
detection methods are widely preferred in the computer domain since they are simple, easy-to-use, low computational complexity, and 
low false-positive rate. However, they suffer from the drawback that they are only capable of detecting known malware attacks. 

Fig. 4. Generic model of computer-based malware detection.  

Fig. 5. Taxonomy of computer-based malware detection methods.  
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Further, they lack robustness against evasion techniques. They involve a time-consuming, manual string signature creation process due 
to which they are less preferred. However, current researches aim to develop automatic signature detection systems, replacing the 
traditional manual signature generation. Signature-based detection methods are classified into rule-based pattern matching methods, 
automatic signature generation method and kernel-based data object mapping method.  

a) Rule-based Pattern Matching Method: Pattern matching involves detecting security breaches by monitoring unusual patterns of 
system usage from the system’s audit records. Denning [3] presented an Intrusion Detection Expert System (IDES) model that works 
on the principles of Rule-based Pattern Matching. The model consists of profiles for representing the legitimate behaviors and rules 
for understanding the anomalous behavior from audit records. IDES detected a wide range of intrusions such as viruses, trojan 
horses, masquerading, penetrations, covert channels, etc. However, the model failed to observe the defects in the target system and 
the action that exploited the respective defect. The actual penetration detection mechanism requires monitoring all supervisor 
calls, which is impractical. They inferred that some key features, such as soundness, completeness, timeliness, metrics, statistical 
models, and profiles, are needed to make the system more robust.  

b) Signature Generation Methods: Signatures have to be adequately long and unique. They should not allow the misclassification of 
benign files as malware. Signatures are used to detect malware in real-time network security systems. The significant challenge in 
high-speed networking is that a byte-string signature may split into two or more packets. Intelligent signatures that comply with the 
drawbacks of high-speed networking detection systems are used to achieve high accuracy systems. 

Function-based Method: Functions are good signature candidates, which are used to mark the start and endpoints. The generation of 
simple and byte-string signatures could be used to further detect and remove malware at the network level. The function-based 
signature is compared against the Common Function Library (CFL). The signature extraction process first identifies and discards 
the Common Function Code (CFC) by analyzing the malware based on the CFL. The false-positive errors are minimized by removing 
functions from the signature list in the CFL. Shabtai et al. [4] proposed an automatic and function-based signature generation 
technique called F-Sign. The intelligent candidate selection strategy generated signatures based on the entropy score. F-Sign tackles 
allergy attacks which are attacks against Automatic Signature Generation systems. State Machine (SM) and Interactive Dis-
Assembler (IDA-Pro) methods were used for function extraction and their false-positive rates were compared for different CFL sizes. 
When a large CFL is used, the false-positive rate is low.  

a) Kernel-based Data Object Mapping Method: Signatures can be generated based on malware’s unique data access behavior and 
common attack patterns on the kernel. Rhee et al. [5] proposed a malware characterization system called DataGene, which exploits 
a data-based OS kernel. The malware was detected and characterized using the properties of data objects of the attacks. Their 
system is comprised of two system components. The first component comprised of the runtime kernel object mapping system that 
enabled an external monitor to identify the access behavior of data objects. The second component described the malware char-
acterization approach that generated a malware signature using unique data object access schemes. 

3.3.2. Dynamic analysis 
Dynamic analysis techniques involve the execution of malware samples and observing their registry, file system, process, and 

network activities in safe mode. The analyst typically interacts with the malicious program in order to effectively analyze its behavior. 
This analysis is carried out in an isolated virtual machine to avoid risk or damage to the host operating system. It records the typical 
features such as instruction sequences, API, and system calls for each executable. This analysis requires a considerable amount of 
computational power and memory. This method was originally developed for computer-based malware where the constraints on 
memory and computational resources are not as high as they are on mobile devices. Dynamic analysis includes behavior-based 
detection methods and machine learning-based detection methods. 

a) Behavior-based Detection Methods: Malware authors employ various detection avoidance techniques like code obfuscation and 
packing to evade static analysis techniques. Therefore, in order to thoroughly understand the nature of the malware, we cannot rely on 
static analysis techniques alone. Behavior-based detection methods are a good solution to overcome such sophisticated, hard-to-detect 
malware. Every component of the binary is analyzed at run time irrespective of how obfuscated the executable is and the packer with 
which the code is packed. Many types of behavior-based malware detection methods were used in the literature. 

System calls based method 
Most malware detection systems are based on the dynamic behaviors of system calls. The anti-detection feature of modern malware 

like system-call injection attacks should be taken into consideration. Naval et al. [6] proposed a new detection approach that char-
acterized the program behavior based on semantically relevant paths using the Asymptotic Equipartition Property of information 
theory. They analyzed the execution flow of malware code based on system calls and represented it as an Ordered System Call Graph 
(OSCG). They built a new feature set by quantifying the semantically-relevant paths using the Average Logarithmic Branching Factor 
(ALBF) metric. Though their method was robust against attacks based on system calls, it was susceptible to evasion. The performance 
was not affected despite the introduction of thousands of system calls into malicious programs. Their solution was effective and 
efficient in identifying real malware instances, but came with high computational overhead. 

Graph-based method 
Li et al. [7] presented a solution for detecting packed malware using a graph-based mining technique. Their method was based on 

consistent execution and obtaining CEG from disassembling code and semantic extraction. A similarity measure was constructed from 
the graph using the Weisfeiler-Lehman shortest-path kernel. The performance evaluations were done on large-scale datasets, which 
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Table 3 
Experimental results of various methods for computer malware detection.     

Performance Results Datasets  

S. 
No 

Authors Methods Accuracy 
(%) 

Precision Recall F1- 
score 

Malware Benign 
No. of Sample/ 
Dataset Size 

No. of 
Malware 
Classes 

Collection 
Period 

Collection Source Dataset URL No. of 
Samples/ 
Dataset Size 

1 Rieck et al.  
[13] 

Dynamic 
Analysis+
Machine 
Learning 

96.18 0.9600 0.9598 0.9599 3133 24 3 years CWSandbox website  http://www.mwanalysis.org 
Malheur dataset: 
http://pi1.informatik. 
unimannheim.de/malheur   

2 Mohaisen 
et al. [24] 

Dynamic 
Analysis+
Machine 
Learning 

96.22 0.9592 0.9642 0.9617 115,157 11 13 months 
(July 15, 
2011) 

Customer submissions, 
Internal submissions, 
and AV vendor samples   

3 Naval et al.  
[6] 

Dynamic 
Analysis 

94.62 0.9414 0.9460 0.9437 2435  2011–2014  https://virusshare.com/  1316 

4 Kolter et al. 
[10] 

Dynamic 
Analysis+
Machine 
Learning 

97.56 0.9718 0.9750 0.9734 1651  2003 VxHeavens website http: //vx.netlux.org 1971 

5 Anderson 
et al. [27] 

Static Analysis+
Machine 
Learning 

91.34 0.9086 0.9128 0.9107 300 K 
(training)/ 
200 K (test) 

3 2017–2018 VirusTotal https://pubdata.endgame. 
com/ember/ember_dataset_ 
2017_2.tar.bz2 
https://pubdata.endgame. 
com/ember/ember_dataset_ 
2018_2.tar.bz2 

300K 

6 Nataraj 
et al. [11] 

Vision-based 
Analysis+
Machine 
Learning 

97.18 0.9657 0.9685 0.9671 9339 25 2011 Malimg dataset https://www.dropbox.com/ 
s/ep8qjakfwh1rzk4/ 
malimg_dataset.zip?dl=0 

– 

7 Roseline 
et al. [28] 

Vision-based 
Analysis+
Machine 
Learning 

98.65 0.9886 0.9863 0.9874 9339 25 2011 Malimg dataset   
97.2 0.9761 0.9679 0.9720 10,868/0.5TB 9 2015 Kaggle Microsoft 

BIG2015 dataset   
97.43 0.9753 0.9732 0.9742 8750 25 2019 MaleVis dataset https://web.cs.hacettepe. 

edu.tr/~selman/malevis/ 
350  
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included manually packed benign apps, wild packed, and unpacked malware. 
Semantics-based method 
The semantics-based approach incorporated the semantics of the program trace to characterize the behavior of malware and the 

suspicious program. The abstract interpretation eliminates irrelevant behavior features. Preda et al. [8] presented a formal definition 
and a semantics-based malware detection framework. Their system experimented with obfuscation methods such as code reordering, 
semantic-nop insertion, the substitution of equivalent commands, variable renaming, etc. Their system exhibited robustness and 
completeness in detecting malware with obfuscations. 

b) Machine learning-based detection methods: due to the challenges posed by the rise of stealthy and obfuscated malware, traditional 
signature-based detection is relatively less preferred. To tackle this, solutions based on flexible detection algorithms picked from 
machine learning have been meticulously designed and developed through recent research and study. Santos et al. [9] studied that 
operational codes better discriminate malware from benign samples and unique opcodes prove to be better predictors than typical 
opcodes. Their method determined the relevance of individual opcodes and computed the weight for each opcode. The weighting 
represented the frequency of occurrences of malware or benign samples. The similarity among two input files was computed to 
recognize malware variants and machine learning classifiers were trained to identify unknown malware. The processing overhead 
increases with the length of the opcode sequences. Their method is static, and hence cannot handle packed malware. 

Each trace can be encoded as a training sample based on n-gram features, and the most relevant n-grams could be selected for 
prediction. J. Kolter et al. [10] proposed a Malicious Executable Classification System (MECS), based on machine learning models for 
the classification of unknown malware in the wild. The evaluation was based on inductive methods such as Naive Bayes, decision trees, 
support vector machines, and boosting. The performance of the methods was assessed using the payload’s function such as opening a 
backdoor and mass mailing. The boosted J48 decision trees performed well and are scalable to a larger collection of executables. They 
suggested that performance could be improved by removing obfuscation and with additional training examples. 

3.3.3. Vision-based analysis 
Nataraj et al. [11] proposed a novel approach of analyzing malware executables using vision-based analysis [28,29] and consid-

ering global features. Their method converted malware into grayscale images, which helped to visualize the similarity among the 
malware classes in terms of layout and texture. The vision-based analysis does not require disassembly or running the samples in safe 
environments. Their method was resilient to obfuscation techniques like section encryption. The limitations of their approach include 
ineffectiveness to adversarial attacks like section relocations and unnecessary redundant data additions. Cui et al. [12] converted 
malware samples into grayscale images and used a CNN to classify them. The data imbalance problem was addressed using a bat 
algorithm-based data equilibrium method. Their approach was limited to fixed-size input images. 

3.3.4. Hybrid methods 
This type of approach includes any combination of static, dynamic, or vision-based methods. A combination of vision-based with 

dynamic (machine learning and deep learning) approaches was presented for developing intelligent malware detectors. A substantial 
set of typical features is created by combining signature-based and behavior-based techniques. 

The clustering of behavior is the grouping of new malware classes with similar behavior, and the unknown malware is grouped into 
these clustered classes, which are known as the classification of behavior. Rieck et al. [13] proposed a new framework for analyzing 
malware behavior based on scalable clustering and classification. They used prototypes for clustering and classification of new 
malware variants, allowing for run-time improvements with a minimal approximation error. They introduced a combined incremental 
approach for behavior-based analysis using clustering and classification. Their approach showed reduced runtime and significantly 
lower memory overhead compared to other analysis methods. An efficient automatic malware behavior analysis is achieved by 
combining their learning-based model with other detection techniques. 

3.4. Computer malware datasets 

Machine learning techniques can be used to build classification tools to detect unknown malware by depending on datasets 
containing various distinct features of malware and clean samples. Labeled samples are known samples, whereas unlabeled samples 
are unknown samples. Datasets of labeled samples belonging to the same class are known as partially labeled datasets. Multiple sources 
of malware samples were collected from the CWSandbox website, Sunbelt Software, customer submissions, internal submissions, AV 
vendor samples, VxHeavens website, internet (browser, downloader, etc.), accessibility (onscreen keyboard), drive-by-download 
servers, VirusShare website, Malware blacklist, etc. The benign samples were collected from personal computers, VirusTotal web 
portal, system programs, shared libraries, McAfee Labs, manual collection from various versions of Windows, Microsoft. Some datasets 
were manually inspected and labeled. The samples were randomly selected from a larger population of malware samples using any 
strategy such as a priority queuing strategy. 

The experimental results of various methods on several datasets for computer-based malware detection are given in Table 3. The 
accuracy, precision, recall, and f1-score are used as performance metrics to analyze the efficiency of some malware detection methods 
used in the literature. The details of various datasets used including the number of classes and samples used for evaluation are also 
provided. 
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4. Mobile-based malware detection 

Mobile devices are a vital part of people’s lives owing to the widespread convenience of on-demand Internet connecting anywhere 
and anytime around the globe. The features and benefits of personal computers have become handy through smartphones. The 
operating systems on mobile devices run applications and provide advanced functions. They have become more user-friendly by 
providing third-party applications like games, fitness, monitoring, healthcare, etc. Wireless providers have started providing more 
advanced mobile phones with data plans. Android OS for mobile phones is popular worldwide and dominates other mobile operating 
systems due to its remarkable features including but not limited to its open-source nature, cost-effectiveness, and support to third-party 
markets and applications. The diverse usage of smartphones has led to the origin of malicious applications which have penetrated open 
marketplaces. These applications are contaminated by malicious Android applications, which disguise themselves as benign appli-
cations or bundled with benign applications. Malware applications stealthily perform operations to acquire a user’s privilege or misuse 
system resources with the aim of monetary benefits. Some of the capabilities of malware include controlling or disabling the device 
remotely or locally, tracking user activities, stealing users’ sensitive data stored on the device. Trojans, Ransomware, Adware, Rootkits 
are the common types of mobile malware threatening mobile users. 

Malware propagates on mobile devices through clicking a malicious link in an e-mail or Short Message Service (SMS), downloading 
infected apps from Google or third-party PlayStore, or setting up internet connections with malicious WiFi networks. At present, the 
most severe vulnerability addressed is a patch for the Android runtime that could let an attacker gain access to certain OS features 
without user interaction. 

4.1. Android security model 

The important security features integral to Android security are (i) Permissions (ii) Application Isolation (iii) Dalvik/Android Run 
Time (ART) (iv) Signing (v) Verify Apps. 

4.1.1. Permissions 
This feature is also known as capabilities or access permissions. As the name indicates, permissions are the access levels, which an 

Android Application Package (APK) would need to be granted to perform its operations. Permissions are requested from the user 
during the install time of an application. Permissions requested from the user are defined in a file called AndroidManifest.xml file 
inside the application package. 

4.1.2. Application isolation 
Android isolates applications installed on the device from each other at the system level by assigning each application, and its 

dedicated process, a unique user identity that is visible only to the system. Whenever an installed application or one of its components 
is called to perform an action, the Linux kernel identifies the target application by its assigned user ID and starts the corresponding 
process in its separate sandbox. No two processes can generally run with the same user ID, (i.e.) within the same process space. This 
protects an application from intrusion by another application at the same privilege level. 

Fig. 6. APK file structure.  

S. Abijah Roseline and S. Geetha                                                                                                                                                                                   



Computers and Electrical Engineering 92 (2021) 107143

12

4.1.3. Dalvik VM/ART 
In earlier versions of the Android OS, each isolated application ran inside a virtual environment (VM), called Dalvik VM, which was 

later enhanced to a VM technology called ART. The host OS is protected from applications, and applications are protected from each 
other. 

4.1.4. Signing 
Each APK is required to be signed either by a certifying authority or by the author. Package signing confirms that the source of an 

application has not been modified since it was signed. Certificates uniquely identify the application’s author. The policy of allowing 
self-signed APKs to load opens the door and creates vulnerabilities for attacks to exploit since malware authors are not vetted and a 
certificate is generated and used for free. Hence, Android malware is self-signed. 

4.1.5. Verify apps 
This feature monitors applications during installation for any malicious activity. It warns the user if it is a suspicious application. 

The user is still allowed to install the application at his own risk. This feature also enables Google to detect malware proactively. 

4.2. APK file structure 

APK is the container file format for executable applications on the Android mobile operating system. An APK is a Zip file with 
specific contents, each meant for different purposes. The significant components of an APK file include classes.dex, AndroidManifest. 
xml, Resources, and META-INF. Fig. 6 shows the APK file structure. 

4.2.1. Classes.dex 
Classes.dex is the executable code component of an APK. The dex is derived from “Dalvik executable”. Like PE files for Windows, 

dex files also have defined headers, metadata, and executable code. Classes.dex is a single binary composed of a group of Java class files 
defined for the APK. The class files are compiled to a proprietary bytecode, interpreted, and executed within a Virtual Machine. 
Android VMs are different from the classical Java Virtual Machine (JVM). While JVM uses pure Java class files transformed to JVM 
bytecode, the bytecode running in Android VMs (Dalvik/ART) is transformed from traditional JVM bytecode to the dex format by 
translating and collating Java class files with the conversion tool dx. 

4.2.2. AndroidManifest.xml 
APKParser.jar is a Java tool that scans through an APK and parses AndroidManifest.xml in that APK for understanding the contents 

of AndroidManifest.xml. APKParser.jar can be exected as follows, 

C:\Program Files\Java\jre7\bin>Java –jar APKParser.jar 
<APK_to_be_parsed>

Each Android application contains a manifest file that carries the following information such as package name and class names used 
in the application (indicate potential app functionality at a glance).  

• API level and libraries required for the application to run (the API level defines the minimum compatibility level of the Android OS 
version required by the application).  

• Application Component information  
○ Activities define the activities for each of the classes defined.  
○ Services declare the processes related to the application.  
○ Intents Filters specify the type of intents that the component would like to receive.  

• Permissions required by the application and granted by the user at install time, for the app’s proper execution. 

4.2.3. META-INF 
META-INF is the security meta-data directory for an Android application. This folder includes the following files:  

a) MANIFEST.MF 

This file contains the list of filenames and their hashes. It validates the integrity of the file content of the APK.  

a) CERT.SF 

This contains the hash of MANIFEST.MF and list of filenames and hashes of their text entries in MANIFEST.MF. It validates the 
integrity of MANIFEST.MF.  

a) CERT.RSA 

S. Abijah Roseline and S. Geetha                                                                                                                                                                                   



Computers and Electrical Engineering 92 (2021) 107143

13

This contains the x.509 certificate containing the public key and signed blob of CERT.SF file. It effectively validates the integrity of 
overall file content inside APK. It contains the signer name and other signer-related metadata. 

The SHA1-Digest (hash) information for various files in an APK will be verified by the operating system at the application 
installation time. APK integrity is validated only at the package content level. Android does not currently provide a mechanism to 
validate the top-level APK as a whole, (i.e.) inclusive of the Zip structure and metadata. This leaves the APK’s top-level Zip structure 
vulnerable to manipulations, which can break the Android Security Model. The generic procedure for the mobile-based malware 
classification process is shown in Fig. 7. 

4.3. Taxonomy of mobile-based malware detection methods 

The taxonomy of mobile-based malware detection methods is depicted in Fig. 8. Mobile-based (Android) malware analysis and 
detection are broadly classified as static, dynamic, vision-based, and hybrid analysis. 

4.3.1. Static analysis 
The signature-based method is well suited for mobile malware detection due to its high scanning speed and low memory usage.  

a) Hash-based Signature Matching Generation Method: Venugopal et al. [14] proposed a hash-based signature matching method by 
viewing it as a multi-pattern matching problem. Memory consumption was found to be very high as the number and length of the 
signatures grow. To reduce memory consumption, the hash value of the signature is stored instead of the signature itself. A hash 
table is used in this algorithm to store the hash values of signatures. The hash table also increases the scanning speed in detecting 
mobile malware. The computation of the index is done efficiently by computing a filter-hash which is used to acquire the index in 
the hash table. Large hash table and memory access impacted the computational time. Various experiments were conducted for 
different hash table sizes for determining the size with minimal computational time. New mobile malware were not detected due to 
memory and power considerations.  

b) Semantic-based Signature Method: Alam et al. [15] proposed DroidNative for detecting both bytecode and native code Android 
malware. The system used specific control flow patterns to overcome obfuscations and provided automation. The cross-platform 
semantic-based signatures were built at the native code level for Android. Techniques such as packing and applications that 
download malware cannot be properly analyzed by the system. Their system could not detect unknown, zero-day malware. The 
system detected known malware variants and identified zero-day malware if its control structure matched an existing malware 
trace in the training database. It did not detect malware that changed the control flow of code based on a threshold value.  

c) Permission-based Method: The frequently used permissions by malicious applications and the significant permission features are 
analyzed through this method. Jiang et al. [16] proposed a static Fine-grained Dangerous Permission (FDP) approach by collecting 
features that best discriminate benign and malicious applications for Android malware detection. Their work efficiently detected 
malware families and required less time for analyzing applications. Their work does not extract more information if the application 
is obfuscated using techniques such as dynamic loading, reflective mechanism, and encryption. Their approach is ineffective, as 
many applications do not allow decompilation. 

Fig. 7. Generic model of mobile-based malware detection.  
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4.3.2. Dynamic analysis 
Traditional signature-based methods lacked robustness in the detection of unknown malware, and hence efficient methods are 

required for zero-day and stealthy/inconspicuous Android malware detection. Significant dynamic features such as permissions and 
API call features exhibit the behavior patterns of Android applications. 

a) Behavior-based methods 
Permission-based Behavior Analysis Method 
The permission use behaviors include the usage of permissions to applications for accessing sensitive system resources and further 

usage of obtained permission-sensitive resources. Zhang et al. [17] presented VetDroid, which performed permission use analysis for 
examining sensitive behaviors in Android apps. VetDroid remodeled very precise malicious behaviors with real-world Android mal-
ware. VetDroid was able to find more information leaks than TaintDroid. Their system identified fine-grained vulnerabilities in some 
applications where it was difficult to detect. The sensitive behaviors of applications were represented as permission use graphs, 
reducing the irrelevant actions. VetDroid was an effective approach for examining and vetting Android apps, and useful in various 
fields like malware analysis and detection, vulnerability analysis, etc. Their approach did not track implicit flows and native code. It 
was relatively slower in comparison to static analysis solutions. 

System call sequences method 
Lin et al. [18] proposed a new method called System Call Sequence Droid, which is based on system call sequences. Malicious 

Repackaged Applications (MRAs) repackaged malware into various benign apps. The system call sequences in a particular layer were 
compared using the Layering MultiThread Comparison (LMTC) mechanism effectively. The common subsequences that are malicious 
were extracted from the system call sequences of repackaged apps belonging to the same family using the Longest Common Substring 
(LCS) algorithm. The common subsequences used Bayes Theorem for identifying any application without demanding an actual benign 
application. Detection of some MRAs like DroidDream and BaseBrige was very difficult as their behavior was disguised to appear like 
benign applications. The longest typical subsequences extracted clean subsequences compared to fixed-length subsequences for 
accurately detecting the MRAs. 

API call patterns method 
Fan et al. [19] detected Android piggybacked applications using Sensitive SubGraph (SSG) analysis. The proposed system worked 

with two assumptions to analyze the various invocation schemes of sensitive APIs of a malicious app and in its host app. Then, a 
subgraph was constructed to record the most skeptical behavior of an app. The invocation patterns were represented with five features 
from SSG which were used by machine learning algorithms for malware classification. Extensive empirical evaluation was done on a 

Fig. 8. Taxonomy of mobile-based malware detection methods.  
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Table 4 
Experimental results of various methods for mobile malware detection.  

S. No Author Methods Performance Metrics Datasets  

Accuracy 
(%) 

Precision Recall F1- 
score 

Malware Benign 
No. of 
Samples 

No.of 
Classes 

Collection 
Period 

Collection Source Dataset URL No. of 
Samples 

1 Arp et al. 
(DREBIN) [25] 

Static 
Analysis+
Machine 
Learning 

92.58 0.9186 0.9254 0.9220 5560 179 August 2010- 
October 2012  

Google Play, Chinese Markets, 
Russian Markets, Android 
websites, Malware forums and 
Security blogs 

https://www.sec.cs.tu-bs.de/ 
~danarp/drebin/ 

123,453 

2 
I. 
II. 

Narayanan 
et al. [20] 
Benchmark 
dataset 
(DREBIN) 
In-the-wild 
(ITW) dataset 

Static 
Analysis  96.22 

85.26  
0.9614 
0.8474  

0.9626 
0.8530  

0.9620 
0.8502  

5560 
42,910  

179  January 2014 
to August 
2014  

Google Play, Anzhi, AppChina, 
SlideMe, HiApk, FDroid, 
Angeeks  

https://sites.google.com/ 
view/casandrantu/dataset  

5000 
44,347 

3 Alam et al.  
[15] 

Static 
Analysis 

92.62 0.9241 0.9252 0.9246 1758 20  Google Play and various 
sources  

3732 

4 Gheorghe et al. 
[26] 

Dynamic 
Analysis+
Machine 
Learning 

94.29 0.9412 0.9425 0.9418 400   VirusShare, AVCaesar, 
Contagio Mobile, and Android 
Malware Genome Project 

1. VirusShare. http:// 
virusshare.com/ 
2. AVCaesar. https://avcaesar. 
malware.lu/ 
3. Contagio Mobile. http:// 
contagiominidump.blogspot. 
ro/ 
4. Android Malware Genome 
Project. http://www. 
malgenomeproject.org/ 

400 

5 Garcia et al.  
[22] 

Static 
Analysis+
Machine 
Learning 

94.27 0.9388 0.9421 0.9404 30,203   Malware Genome Project, 
Drebin, VirusShare, VirusTotal 

https://seal.ics.uci.edu/ 
projects/revealdroid/ 

24,679  
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huge real dataset containing malware and legitimate apps. High detection accuracy was observed. Their method could also be used 
with permission-based and API-based methods by employing five features in a combined manner. 

b) Machine learning-based method 
Narayanan et al. [20] proposed an online learning detector called Context-aware, Adaptive and Scalable ANDRoid mAlware 

(CASANDRA) for the detection of malware. The security-sensitive behaviors of apps and their information were identified from 
dependence graphs using graph kernel, allowing an accurate detection. Their model was scalable and adaptive to the population 
growth and rise in new malware features. The significant features were explained to discriminate malicious apps from benign. Their 
system was tested on real-world datasets and benchmark datasets. 

4.3.3. Vision-based analysis 
Fang et al. [21] presented an Android malware family classification approach using data section features of the Dalvik Executable 

(DEX) file. Each DEX file is visualized as an RGB image and plaintext. The color and texture of the image, as well as the text, were 
extracted as features. The classification of benign and malapps was performed using a multiple kernel learning-based feature fusion 
algorithm. Their results showed better performance in classifying Android malware families. Their approach is time-efficient 
compared to the frequent subsequence approach. 

4.3.4. Hybrid analysis 
Hybrid analysis is performed on Android applications by combining static, dynamic, and vision-based features for effective mal-

ware classification. Garcia et al. [22] proposed an Android malware detection and classification system called RevealDroid that does 
not require complex program analysis or more features. Their system depends on features including API calls, indicative calls char-
acterized by the extent to which the invoked methods can be accomplished, and native binary invocations to internal and external 
functions. The efficiency of their model was evaluated using a larger dataset with 54,000 malware and benign applications. They also 
assessed the obfuscation resiliency of RevealDroid by applying various transformations on malware applications. Their approach 
proved 13 times faster than other methods that use information-flow-based feature extraction. They have used a balanced dataset for 
evaluating their model. The risk of external validity problems may occur due to the fewer number of applications in the dataset. This 
leads to the issue of generalizability in the results. Internal validity issues may also occur due to mislabeling of samples. Construct 
validity is another issue due to the dataset transformations and non-realistic obfuscations. 

Ma et al. [23] proposed an integrated method for detecting Android malware using machine learning. They extracted API infor-
mation by constructing control flow graphs for Android applications. They developed three datasets, namely- boolean, frequency, and 
time-series datasets using the API information in the form of API calls, API frequency, and API sequence. Their method reduced the 
redundant APIs that resulted in better performance. They assessed three machine learning-based detection techniques based on the 
three datasets. They observed that their datasets distinguished malware and benign samples accurately. 

4.4. Mobile malware datasets 

Mobile malware datasets are crucial for building efficient malware detection and classification systems. There are various Android 
malware datasets publicly available for the evaluation of malware detectors. The dataset samples are collected from different app 
markets. The most widely used datasets available are Drebin and Malgenome. AndroZoo dataset includes many applications from 
various sources like GooglePlay, AppChina, etc. VirusShare, Koodous, Contagio mobile, VirusTotal, and SlideME Market are other 
repositories containing a large number of Android applications. The apps are labeled as malware or benign by checking using the 
VirusTotal service. 

Table 4 provides the experimental results of various methods on several datasets for Android malware detection. The performance 
measures such as Accuracy, precision, recall, and f1-score are calculated to assess the performance of the detection methods. Infor-
mation such as the number of classes and samples used and collection period and sources are also included. 

5. Issues and challenges in malware detection 

Automated detection systems are developed and successfully used in Windows/Android malware detection. Still, many severe 
issues are identified and need to be addressed to achieve efficient anti-malware solutions [30]. The malware detection system should 
focus to accomplish a good balance between timely identification and detection performance. The detection model should be real-time, 
automated, and powerful despite evasion techniques, targeted and unknown stealthy malware. Effective malware detection methods 
should be designed to perform better in terms of correctness estimation, less computational time, the low false-positive rate with the 
exponential growth of malware. The major issues and challenges of malware detection solutions are analyzed through perception of 
machine learning and the way in which they can be considered and employed by the anti-malware industry. They key concerns are 
presented below: 

5.1. Machine learning 

The state-of-the-art malware detection systems use machine learning algorithms. The performance of the classifiers was observed to 
be better in terms of low false positives and computational complexity. The detection of new malware remains critical. The learning 
aspects to address the challenges that affect the performance of the detection system must be considered. 
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5.1.1. Improved learning 
Improved learning is the active learning of unknown samples to improve the performance of the classifier. Unknown file samples 

are detected based on the identification of known malware samples. The labeling of typical malware samples from the unknown 
sample database is essential. Before being detected, the new malware sample is labeled as unknown and the related variants of the 
sample are classified correctly. 

5.1.2. Adversarial learning 
Malware attackers design adversarial techniques to cause the classifier model to mistrain (e.g.) giving false data as input. The 

system should be able to learn adversarial techniques leading to a more robust and secure detection system. 

5.1.3. Dynamic learning 
Handling a larger training set of known and advanced malware such as behavior-based, dynamic, and unknown malware remains a 

challenge. The detection system is typically trained on the dataset containing previously written malware samples. The most recent 
malware samples should be considered for training the detection models. The classifier should learn the dynamic database with the 
arrival of newly evolving malware. The extraction of significant features leads to a more comprehensive detection system. 

5.2. Automated malware analysis and detection for real-time use 

The automated analysis and detection of malicious files in real-time is a challenge, requiring the knowledge of domain experts. The 
dynamic and behavioral features, as well as static features of malicious executables, should be extracted to achieve a more generalized 
detection system. The system should consider all of the interesting details about the malware. The system should characterize 
soundness and completeness to all conservative obfuscations. The system should be adaptive to the new population and the evolution 
of malware, and should effectively address more scalability issues. Automated real-time detection is need-of-the-hour with the arrival 
of zero-day malware attacks. 

5.3. Second opinion to manual expert malware analysis 

The classification results provided by these intelligent engines, however high the level of accuracy being reported is, are not 
accepted as is, by the commercial anti-malware products. Actions performed to either stop the malware or to permit a genuine 
application, based on these automated malware analysis reports with the assistance of machine learning techniques, have not been 
implemented in real-time practice yet. Those results just serve as a second opinion, augmenting the expert manual classification 
process. The time when the automated analysis results are used as the single source of action marks the success of these intelligent anti- 
malware engines. 

6. Conclusion 

The exponential growth of advanced and new malware has led to the need for intelligent detection systems. In this paper, we 
presented a survey on traditional and contemporary techniques for alleviating computer and mobile malware attacks. This survey 
paper provides an in-depth and lucid understanding of malware analysis, existing detection methods, and their taxonomy for computer 
and mobile platforms are presented. With the existence of evasion methods adopted by malware writers, the detection of malware is 
becoming a difficult task. The static, dynamic, machine learning and hybrid detection methods are used in the detection and classi-
fication of malware and are not able to manage the flow of dynamic and unknown malware samples. The detection systems based on 
machine learning techniques are an efficacious solution for intelligent malware detection. A hybrid combination of methods could be 
used to achieve better results in a real-world scenario. Open research problems are presented as pointers for security researchers and 
analysts to develop robust and real-time techniques to cope with the cyber world. It is consequent that the research on unknown 
malware and its prevention will take a big leap in the future. 
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